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Numerical calculations show that the flow of viscous incompressible fluid in 
a circular pipe is stable to small axisymmetric disturbances at all Reynolds 
numbers. These calculations are linked with known asymptotic results. 

1. Introduction 
Osborne Reynolds studied the instability of Poiseuille flow of water in a pipe 

in his classic experiments at  the end of the last century. He found that the laminar 
flow became unstable when R = Wa/v was nearly 13,000, where W is the maxi- 
mum velocity of parabolic basic flow at the middle of the circular pipe of radius a 
and v is the kinematic viscosity of the fluid. Later experimenters found this 
critical value of the Reynolds number varied from about 2000, when the surface 
of the pipe is rough or the flow at the inlet irregular, to 40,000 or even more when 
the tube and the flow at the inlet are very smooth. 

Sexl (19274 began the theory of the instability of pipe flows. He found equa- 
tions (1) of hydrodynamic stability for small axisymmetric disturbances of a 
basic flow in a pipe by the method of normal modes. Further theory on axi- 
symmetric modes has been written by Corcos & Sellars (1959) and Gill (1965). 
Gill’s paper is the most definitive, with a full account of the problem. A 
little inconclusive work on the harder problem of non-axisymmetric modes 
has been done by Sexl (1927b) and Lessen, Fox, Bhat & Liu (1964). It is now 
generally conjectured that Poiseuille flow is stable to infinitesimal disturbances 
but unstable to finite ones, on account of the experiments and of threads of 
theoretical evidence. The experimental instability has also been attributed to 
instability of the boundary layer inside the pipe at the inlet, upstream of the 
fully developed parabolic profile. Tatsumi (19523) studied the instability of this 
boundary layer to only axisymmetric disturbances, finding a critical Reynolds 
number of nearly 10,000. It has been suggested also that instability may begin in 
the time taken to develop the parabolic profile. However, suitable experiments 
with gently converging inlet and a flow slowly built up are not susceptible to 
these mechanisms of instability and such experiments seem to be the rule. 

The eigenvalue problem for small axisymmetric disturbances is stated in $ 2  
and it is shown that unbounded Poiseuille flow is stable. The two numerical 
methods we have used, integration of the stability equation with a ‘shooting ’ 
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method to match the two-point boundary conditions and an expansion of the 
eigenfunction as a series of known orthogonal functions, are described in $3. The 
stability characteristics of tempor.ally and spatially damped disturbances of 
Poiseuille flow are presented in § 4. The numerical results of the two methods agree 
and join up accurately with known asymptotic results, showing conclusively 
that all axisymmetric disturbances are stable at all Reynolds numbers. 

2. The eigenvalue problem for axisymmetric disturbances 
We shall work with dimensionless cylindrical polar co-ordinates (x, r ,  O), 

choosing a as the unit of length and W of velocity. Then it can be shown (Sex1 
1 9 2 7 ~ )  that the stability of a pipe flow of incompressible viscous fluid with axi- 
symmetric basic velocity (U(r ) ,  0,O) to axisymmetric disturbances is governed 
by the equation 

(1) 

where the small radial velocity of the fluid 

L2$ = iaR{( U - c) L$ - r( U’/r)’$); 

u, = - r-l$(r) exp {ia@ - ct))., (2) 
a is the wave-number and c = c,, + ici the complex wave velocity of the normal 
mode ; dashes denote differentiations with respect to r ; and the differential 
operator 

L = d2/dr2 - r-l d/dr  - a2. (3) 

The conditions of no slip on the pipe and of bounded velocity at  the axis give 

$, 4’ = 0 (r = 0 , l ) .  (4) 

(5) 

Equation (1) and boundary conditions (4) specify an eigenvalue relation of the 
form 

We have taken the view of temporally growing disturbances, for which real a is 
given and values of c are to be found as complex eigenvalues. Then there is in- 
stability of the flow if aci > 0 for any mode. We may alternatively impose a real 
temporal frequency p = ac and seek complex eigenvalues a = a,, + iai as roots 
of relation (5). Then there is instability with a spatially growing mode if ai < 0 
for any real /3 (Gaster 1962). 

If we take the real part of 

F(a,  c, R) = 0. 

/: (rR)-l $*(equation (1)) dr, 

integrate by parts and use boundary conditions (4), we readily find that 

aci (1; + a21g) = +&zr--lU’($*’$ - 4*$’) dr - R-l(I; + 2 ~ ~ 1 2 ,  + a44) (6) 

for temporal modes, where an asterisk denotes a complex conjugate and the 
positive integrals 

s: 
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This is in fact the power equation of the disturbance, the left-hand side being the 
rate of change of the kinetic energy of the disturbance, the integral the rate of 
transfer of energy from the basic flow to the disturbance by the Reynolds stress 
and the last term the rate of viscous dissipation of the disturbance per unit length 
of pipe. This result is essentially due to Synge (1938). He used variational methods 
on the power equation of plane parallel flows but obtained only weak sufficient 
conditions for stability, because the power equation contains no information of 
the singularity in the critical layer where U = c which occurs in the limit as 
aB + co, a singularity intimately related to the mechanism of instability. So 
here we shall merely note that Synge has used a power equation to prove the 
stability of any pipe flow for sufficiently small R. In particular there is stability 
of a state of rest ( U  = 0 or R = 0). 

However, we can gain more information by taking the real part of 

1; ia(rR)-l $*L (equation (1)) dr. 

This gives the vorticity-square equation, 

where 
r i  

(9) 

Note that (a )  boundary condition (4) and the regularity of $ near r = 0 give 
L$ = 0 at r = 0 and (b)  equation (8) holds for unbounded flow if theupper limit 
one is replaced by infinity. Now suppose that U = A + Br2 (0 < r < a) for some 
constants A , B .  Then condition (4) at infinity implies that the solution # of (1) 
tends to zero exponentially and therefore that L$ + 0 as r -+ 00. In this case it 
follows from (8) that mi < 0 and therefore that unbounded parabolic flows are 
stable to axisymmetric disturbances. (It may be analogously shown that un- 
bounded plane Couette and plane Poiseuille flows are stable.) 

3. Numerical procedures 
We have used two numerical procedures. For the first, the solution of the 

stability equation (1) is expanded as a power series in r near the channel centre. 
From a small but finite value of r the solution is continued by Runge-Kutta 
integration to the wdl. Various tests were made to optimize the size and number 
of the steps of integration, smaller steps being necessary where the solution varied 
more rapidly. To solve the two-point boundary-value problem a two-tier shooting 
technique was used. This was necessary because for large aR the exponents of 
the two unwanted exponentially growing solutions have different orders of 
magnitude. No filter was necessary because the computer had efficient multi- 
precision facilities and the results join accurately with asymptotic results. 

14-2 
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For the second numerical procedure, we considered the expansion of the 
solution 

where {$,} is some known complete set of functions satisfying the boundary 
conditions and {un) is a sequence to be determined from (1). This method has been 
applied to the stability of plane parallel flows by Dolph & Lewis (1958), Gallagher 
& Mercer (1962) and Grosch & Salwen (1968). To get rapid convergence {$J 
should be close to the actual sequence of eigenfunctions of the system (l), (4). 
However, this is unpractical andit seems best to define 4, as the nth eigenfunction 
with value An ( < A,,,) satisfying boundary conditions (4) and the equation 

L2q5 = - A$* (10) 

We can identify A with iaRc and {$n} with the eigenfunctions of the stability 
problem (l), (4) when U = 0 or R -+ 0. It can be shown (Sex1 1927a) that 

#n = ~i”r(’l(a) J1(Un r )  - Jl(un) ‘l(ar)>; (11) 

where p, is any constant, A, = u: + a2, u, ( c u,+~) is the real nth root of the 
transcendental equation 

uJ;(u)/Jl(u) = - p  = aI;(a)/Il(a), (12) 
J1 is the Bessel function and I, the modified Bessel function of order one. It can 
be seen that - co < p < - 1 for each a > 0, and hence that 

j1,n <us < j l , n + l  ( n = 1 9 2 , 3 , * - * ) ,  

where j,, ,, ji, are the nth zeros of Jl(u), J;(u) respectively. The eigenfunctions 
($3 have the orthogonality property that 

when we have normalized by choosing 

= h n ( P 2 + ~ ; -  1) If(.) J:(U,) /~U~. 
Substitution of the series for $ into (1) gives 

rn 2 {( u - C) ~ 4 %  - r( U‘/r)’ 4, - i ~ ,  (a~1-1 L ~ J  a, = 0. 
n = l  

JIr-l$m (equation (15)) dr gives the infinite set of algebraic equations 

where 

m 

(14) 

(15) 

In  our numerical work the infinite system (16) is truncated, the series being 
summed to N instead of infinity, with N = 27. Then the first N roots c were found 
by procedures COMHES and COMLR of Martin & Wilkinson (1968a, b)  as the 
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eigenvalues of the N x N matrix diag ( - iA,/aR) - Bmn. Convergence is dis- 
cussed by Dolph & Lewis (1958) for the analogous problem of plane parallel 
flows. The truncation error is difficult to assess in practice, but increases with aR 
because the terms AJaR diminish relative to B,, as aR increases, yet B,, -+ - 2 

not zero, as n + 00. 

Perhaps the most convincing evidence of the accuracy of our two numerical 
procedures is their agreement on the eigenvalues c (the magnitude of the difference 
of their two results being typically for aR < 10,000) and their agreement 
with asymptotic results. The first method of direct integration is by and large 
superior, being quicker and more flexible. In  particular it gives eigenfunctions 
and spatially growing modes easily. The method of function expansion seems 
better for finding all the first N eigenvalues of the temporally growing modes 
rather than the first one or two and for showing clearly which mode is which. 

3 ,  

4. Stability characteristics of Poiseuille flow 
First we shall describe the characteristics of temporally damped disturbances - - 

of Poiseuille flow, U = l - r 2  ( O < r < l ) .  
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FIGURE 1. Curves of constant ucd and 0, in the (01, R)-plane 

for the least stable temporal mode (m = 1 or .n = 1). 
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Each mode was found to be stable for all real a, R. Figure 1 gives curves of constant 
phase-velocity c, and logarithmic growth rate pi = aci of the least stable mode, 
It can be seen that the curves of constant /3$ are nearly straight lines. This is a 
centre mode for which c, -+ 1 as aR + 00. Pekeris found these modes with eigen- 
value 

c =  1+4me-ani(aR)-B+o(aR)-9 as aR+m (m=1 ,2 ,3 ,  ...) (19) 

(cf. Gill 1965, p. 156). Our results agree with this formula well for m = 1 and 

a 

I I I I I I I I 
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R 
FIGURE 2. curves of constant ac, and c, in the (a, R)-plane 
for the  least stable temporal wall mode (q = 1 or n = 2). 

aR more than about 5000. Corcos & Sellars (cf. Gill 1965, p. 161) found also wall 
modes for which 

(20)  

(21) 

and z-* = zp*. Figure 2 gives curves of constant pi, c, for the least stable wall 
mode (q = 1). From a temporal point of view this mode is the second least stable 
for small aR, the third for most points of the (a, R)-plane in figure 2, but more 
stable than. the centre modes as aR + 00. 

aR)-) + o(aR)-f as aR --t 00, f* ( c = - 23 e - b t z  

where zq is the gth root with positive imaginary part of 
W s, Ai(z)dz = 0 (p=1,2,3,  ...) 
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Figure 3 (a) gives c,. against c,for a = 1, R = 10,000 for 27 modes c,. The similarity 
with Corcos & Sellars's (1959, figure 2) asymptotic results is striking, although 
(aR)-g is not very small when aR = lo4 and c,. less so. Figure 3 ( b )  and other results 
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FIGURE 3. (a) Values of c for a = 1, R = 10,000. 
( b )  Values of c for a = 1, R = 5000. 

which we have obtained, but are not presented here in detail, suggest the follow- 
ing pattern of modes in the complex c-plane: the infinity of points c, lie near either 
the line c, = 8 or pairs of lines radiating from points with c, = 5 and making 
angles of 45" or - 60" and - 30" or 45" respectively with the positive c,.-axis, and 
as aR increases the points c, move along these lines towards the c,-axis. For aR 
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less than about 100, our results agree well with equation (12), etc., giving 
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~ c R  - - ih,(a). 

Next, we give our results for spatially damped disturbances, which have their 
frequency fixed and real and which decay downstream with a logarithmic 
damping rate a*. The temporal wall mode q = 1 has a high value of cr and thus 
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FIGURE 4. Curves p = Q and R = 5000 in the (ar, pR)- and 
(ai, pR)-planes. Results correspond to the mode q = 1. 

Gaster’s transformation may be used on the temporal results to obtain some 
approximate spatial solutions. These were used as initial data for the shooting- 
technique numerical method. The results for this wall mode are summarized in 
figure 4, which gives curves of /3 = constant and R = constant in the (a,R,PR)- 
and (aTR, PR)-planes. We have taken /3 = 6 and R = 5000 as typical values. This 
figure may be compared with figure 5 ( b )  of Gill (1965) with regard to  the q = 1 
mode. For comparison with Gill’s asymptotic theory, the point P on figure 4 
is given by equation (5.8) of Gill withpR = 4280. However, as (5.8) is an approxi- 
mation for small p, P must lie on the curve /3 = 0 or its limiting position in figure 4. 
Points Q,  R, S correspond to  /3R = 2140, 800, 236 respectively with excellent 
agreement. 

The mode q = 1 is the least damped wall mode, but it is more highly damped 
than several of the I- and m-modes defined by Gill. We now attend to these less 
damped modes, which for small values of /3R (the 2-modes) cover the whole of 
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the pipe and for larger values of /3R (the m-modes) are concentrated near the 
centre. In  equation (6.22) of his paper Gill gave limiting values of (aiR)4 as 
BR -+ 0 for the first three 1-modes, using the asymptotic approximation for 
large 1. He gave values for c, = P/a, of 0.9161, 0.8510, 0.8137 and we found these 
values to be 0.8264, 0.7615 and 0-7173 respectively on solving the eigenvalue 
problem numerically. 
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FIGTJRE 5. (a) Curves (r,(P) for R = 10,000 and modes rn = 1, 2, 3; q = 1. 
( b )  Curves aj(P)  for R = 10,000 and modes n z  = 1,  2 ,  3; q = 1. 
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Figure 5(a )  gives the variation of a+- and figure 5 ( b )  the variation of a, with 
small ,8 for each of the modes 1 or m = 1 , 2 , 3  and q = 1 when R = 10,000. Our 
figure 5 ( a )  corresponds closely with Gill’s figure 5 (b ) .  The curves of our figure 5 ( b )  
pass through the exact values given by Gill’s equation (6.22) for ,!I = 0. In  all, our 
calculations, presented or not presented here, support Gill’s interpretation and 
interpolation of the asymptotic results, even agreeing on the peculiar ‘kink’ in 
the graph of ai against ,!IR for the centre modes. 

5.  Conclusions 
In  view of the long controversy over the instability of Poiseuille flow, with 

‘proofs’ and objections to ‘proofs’, it is reassuring that our numerical results 
join sowellwithasymptoticresults, evenforvaluesof (aR)*that are not verylarge. 
It emerges clearly now that the flow is stable to all axisymmetric small dis- 
turbances, that there is an infinite number of such modes and that Gill’s (1965) 
interpretation of the asymptotic results and of the relation between the modes 
is confirmed. 

Nevertheless, non-axisymmetric infinitesimal disturbances and finite ampli- 
tude disturbances, which are the most likely causes of instability, have, as yet, 
received very little theoretical or computational treatment. The value of the 
Landau constant for finite amplitude axisymmetric disturbances is being calcu- 
lated. 

One of the authors (P. G. D.) thanks Dr J. H. Wilkinson for the procedures 
COMHES and COMLR in advance of their publication. The other (A.D.), 
whose work was done as part of the general research programme of the National 
Physical Laboratory, thanks Dr M. Gaster, Dr A. E. Gill and Dr D. Schofield 
for helpful discussions and correspondence. 
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